Quantum deep learning
نویسندگان
چکیده
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. Here we investigate if quantum algorithms for deep learning lead to an advantage over existing classical deep learning algorithms. We develop two quantum machine learning algorithms that reduce the time required to train a deep Boltzmann machine and allow richer classes of models, namely multi–layer, fully connected networks, to be efficiently trained without the use of contrastive divergence or similar approximations. Our algorithms may be used to efficiently train either full or restricted Boltzmann machines. By using quantum state preparation methods, we avoid the use of contrastive divergence approximation and obtain improved maximization of the underlying objective function.
منابع مشابه
WHY AND HOW TO APPLY QUANTUM LEARNING AS A NEW APPROACH TO IMPLEMENTATION THE CURRICULUM
The present study was philosophical and analytical research that examines quantum learning as an effective approach to the curriculum in a qualitative way. It explored books, published essays, and related studies, and took some advantages of online materials on the issue from domestic and foreign sources. Because of large body of data on the issue, only the relevant information was included. Da...
متن کاملChallenges in Deep Learning
In recent years, Deep Learning methods and architectures have reached impressive results, allowing quantum-leap improvements in performance in many difficult tasks, such as speech recognition, end-toend machine translation, image classification/understanding, just to name a few. After a brief introduction to some of the main achievements of Deep Learning, we discuss what we think are the genera...
متن کاملBridging Many-Body Quantum Physics and Deep Learning via Tensor Networks
The harnessing of modern computational abilities for many-body wave-function representations is naturally placed as a prominent avenue in contemporary condensed matter physics. Specifically, highly expressive computational schemes that are able to efficiently represent the entanglement properties which characterize many-particle quantum systems are of interest. In the seemingly unrelated field ...
متن کاملHow deep learning works -The geometry of deep learning
Why and how that deep learning works well on different tasks remains a mystery from a theoretical perspective. In this paper we draw a geometric picture of the deep learning system by finding its analogies with two existing geometric structures, the geometry of quantum computations and the geometry of the diffeomorphic template matching. In this framework, we give the geometric structures of di...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 16 شماره
صفحات -
تاریخ انتشار 2016